

Umweltproduktdeklaration

gemäss EN 15804

1 Generelle Informationen

1.1 Deklarationsinhaber

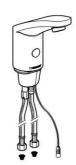
Geberit International AG Schachenstrasse 77 CH-8645 Jona Tel. +41 55 221 6300 sustainability@geberit.com www.geberit.com Geberit zählt zu den Pionieren der Nachhaltigkeit in der Sanitärbranche. Seit den 90er Jahren ist nachhaltige Entwicklung Teil der Unternehmensstrategie. Alle Produktionsstandorte sind nach ISO 9001 und 14001 zertifiziert.

Frühzeitig wurden für die wichtigsten Produkte Ökobilanzen erstellt, und die umweltgerechte Gestaltung ist seit 2008 fester Bestandteil des Produktentwicklungsprozesses. Als Mitglied des United Nations Global Compact bekennt sich Geberit zu den Prinzipien der nachhaltigen Entwicklung. Aktuelle und umfassende Informationen zur Nachhaltigkeitsstrategie und -leistung betreffend Geberit und Geberit Produkte finden Sie im Geberit Sustainability Performance Report, der in den Geschäftsbericht integriert ist und die Anforderungen der Global Reporting Initiative erfüllt (siehe http://geschaeftsbericht.geberit.com / http://annualreport.geberit.com).

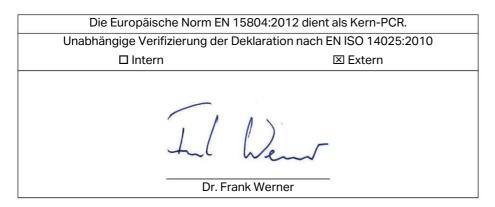
1.2 Deklariertes Produkt

Berührungslose elektronische, netz-, batterie- oder generatorbetriebene Geberit Waschtischarmaturen

1.3 Verifizierung und Gültigkeit


Programmhalter: Geberit International AG

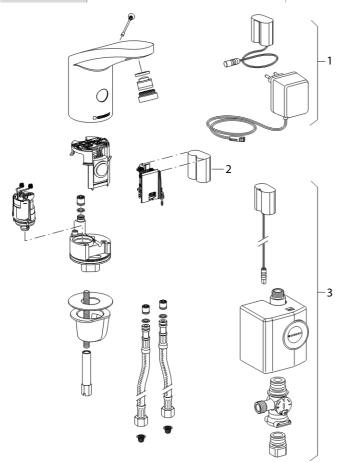
Deklarationsnummer: GEB_EPD_D57210


Gültigkeit: 1.12.2012 bis 30.11.2017

Datenberechnung erfolgt durch: ESU-services GmbH

www.esu-services.ch

EPDs von Bauprodukten sind unter Umständen nicht vergleichbar, wenn sie nicht mit der EN 15804 übereinstimmen.


2 ■ **GEB_EPD_**D57210 © 04-2013

2 Produkt

2.1 Beschreibung und Verwendungszweck

Die untersuchten Produkte sind berührungslose, elektronische Geberit Waschtischarmaturen vom Typ 185/186. Sie werden zum Händewaschen in öffentlichen und halböffentlichen Sanitärräumen eingesetzt und über einen Infrarotsensor gesteuert. Sie sind erhältlich einerseits mit Kalt- und Warmwasseranschluss mit und ohne Mischerhebel, andererseits mit Kalt- oder Mischwasseranschluss. Der Strombedarf ist sehr gering und kann über eine Netz-, Batterie- oder eine autarke Generatoreinheit geliefert werden. Sensor, Elektronik und Magnetventil stellen sicher, dass Wasser nur bei Bedarf fliesst.

Тур	Netz	Batterie	Generator
185	116.135.21.1	116.235.21.1	116.335.21.1
	116.145.21.1	116.245.21.1	116.365.21.1
	116.155.21.1	116.255.21.1	-
186	116.136.21.1	116.236.21.1	116.336.21.1
	116.146.21.1	116.246.21.1	116.366.21.1
	116.156.21.1	116.256.21.1	_

- 1 Netz
- 2 Batterie
- 3 Generator

3

2.2 Eigenschaften

- · Auslösung berührungslos
- · Wasserersparnis durch reaktionsschnelle 2-Strahl-Abtasttechnik
- · Infrarotsteuerung selbsteinstellend
- · Wassersparmodus einstellbar
- Temperaturbegrenzung
- · Volumenstrombegrenzung durch Strahlregler
- Hochwertiges, bewährtes Magnetventil
- Sicherheitsschraube deaktiviert Armatur für sichere Servicearbeiten

2.3 Technische Daten

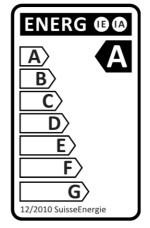
		Netz	Batterie	Generator
Durchflussleistung	l/min	6	6	6
Stand-by-Verbrauch des Netzteils	W	0,25	_	_
Energieverbrauch des Netzteils	kWh/a	2,19	_	_
Batterie-/Akkulebensdauer bei 100 Nutzungen pro Tag	а	_	2	10

Zur weiteren Begrenzung des Durchflusses können wahlweise auch Strahlregler mit 3,8 Liter pro Minute (Artikelnummer: 242.834.21.1) oder 1,9 Liter pro Minute (Artikelnummer: 242.645.21.1) eingesetzt werden.

2.4 Konformität und Label

Das Produkt erfüllt unter anderem nachfolgende Standards:

DIN EN 15091	2006	Sanitärarmaturen mit elektronischer Öffnungs- und Schliessfunktion
DIN EN 60730-1	2005	Automatische elektrische Regel- und Steuergeräte für den Hausgebrauch und ähnliche Anwendungen Teil 1: Allgemeine Anforderungen; Änderung AB
DIN EN ISO 3822	2010	Akustik – Prüfung des Geräuschverhaltens von Armaturen und Geräten der Wasserinstallation im Laboratorium
DIN 50930-6	2001	Korrosion metallischer Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wasser Teil 6: Beeinflussung der Trinkwasserbeschaffenheit
DIN EN 248	2003	Sanitärarmaturen – Allgemeine Anforderungen für elektrolytische Ni-Cr-Überzüge
EN 61000-6-1	2007	Elektromagnetische Verträglichkeit (EMV) – Teil 6-1: Fachgrundnorm; Störfestigkeit für Wohnbereich, Geschäfts- und Gewerbebereich sowie Kleinbetriebe
EN 61000-6-3	2007	Elektromagnetische Verträglichkeit (EMV) – Teil 6-3: Fachgrundnorm; Störaussendung – Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe
EG Nr. 2011/65	2011	Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (RoHS)
EG Nr. 1907/2006	2006	Verordnung zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH)
EG Nr. 2012/19	2012	Richtlinie über Elektro- und Elektronik-Altgeräte (WEEE)


Entsprechende Konformitätserklärungen können von den Homepages unserer Ländergesellschaften heruntergeladen werden. Es gilt eine Gewährleistungsfrist von mindestens 24 Monaten, sofern keine länderspezifischen Verträge bestehen.

Das Produkt verfügt über die folgenden Labels und Auszeichnungen:

- WELL public Water Efficiency Label: ausgezeichnet mit der höchsten Effizienzklasse A (Reg. Nr: WA10102-20101028, WA10101-20101028)
- Energieetikette Schweiz: ausgezeichnet mit der höchsten Effizienzklasse A (www.energieetikette.ch)
- iF Product Design Award 2011 (DE) für generatorbetriebene Armatur

4 ■GEBERIT GEB_EPD_D57210 @ 04-2013

2.5 Rohmaterial

Das Produkt besteht aus folgenden Materialien:

[g]	Netz	Batterie	Generator
Kupfer	37	_	3
Messing	1833	1833	2148
Stahl	236	177	205
Kunststoffe	147	77	256
Elektronik	28	18	35
Batterien	_	37	78
Summe [kg]	2,3	2,1	2,7
Recyclinganteil [%]	33	34	31

Das Produkt wird in einem Karton (90 x 237 x 337 mm) mit einem Gewicht von 319 g geliefert. Darin enthalten sind etwa 245 g Papier und 15 g Plastikfolie, was ein Gesamtgewicht von 2,9 kg (Netz) ergibt.

Bemerkung: Seit der Erstellung des Hintergrundberichts konnte die Menge an Papier von 441 g auf 245 g reduziert werden. Diese Anpassung hat nur geringfügige Auswirkungen auf die Ökobilanz-Ergebnisse und wird daher vernachlässigt.

2.6 Herstellung

Die Herstellung der Kunststoffteile sowie die Montage der Waschtischarmatur erfolgten an den nach ISO 14001 zertifizierten Geberit Standorten – hauptsächlich in Schanghai (CN) und zum kleinen Teil in Rapperswil-Jona (CH). Die übrigen Komponenten werden zugekauft. Alle Lieferanten unterzeichnen den Geberit Lieferanten-Verhaltenskodex und durchlaufen ein detailliertes Auswahl- und Prüfprogramm.

2.7 Distribution

Der Transport von Geberit zum Kunden innerhalb Europas erfolgt über das moderne und effiziente Zentrallager in Pfullendorf (DE) mittels Lastwagen und in Länder ausserhalb Europas hauptsächlich per Frachtschiff in Kombination mit LKWs für die Feinverteilung.

2.8 Installation

Die Installation ist einfach und bringt keinen zusätzlichen Energie- oder Materialverbrauch mit sich. Der anfallende Papier- und Kartonabfall kann vollständig wiederverwertet werden.

2.9 Nutzung

Berührungslose Waschtischarmaturen sorgen für einen sparsamen Wasserverbrauch dank effizienter elektronischer Steuerung und sie wurden dafür auch bei WELL (Water Efficiency Label) mit der höchsten Effizienzklasse A ausgezeichnet. Der tatsächliche Verbrauch von Wasser und Energie während der Nutzungsphase hängt aber hauptsächlich vom Benutzerverhalten ab und wurde deshalb nicht in diese Umweltproduktdeklaration aufgenommen. Relevante technische Betriebsdaten finden sich jedoch im Kapitel 2.3. Bei einer Nutzungsdauer von zehn Jahren fallen nur für die batteriebetriebene Geberit Waschtischarmatur Wartungsarbeiten und damit geringfügige Kosten für den Batteriewechsel an.

2.10 End-of-Life

Die Waschtischarmaturen enthalten Elektronik und müssen daher separat entsorgt werden. Bei fachgerechter Entsorgung sind sie vollständig rezyclierbar.

2.11 Green Building Information

Geberit stellt Systemlösungen für nachhaltiges Bauen bereit und ist aktives Mitglied der folgenden Verbände:

- Deutsche Gesellschaft für Nachhaltiges Bauen, DGNB (DE)
- · Minergie für nachhaltiges Bauen (CH)
- · Green Building Council (USA)
- · Greenbuild, nachhaltiges Bauen (AU)

Informationen, die in verschiedenen Zertifizierungssystemen des nachhaltigen Bauens wichtig sein können, finden sich in den Kapiteln der vorliegenden EPD anhand der unten aufgeführten Verzeichnisse.

DGNB

Relevante Kriterien der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB), Nutzungsprofil Neubau Wohngebäude, Version 2012 zur Planung und Bewertung von nachhaltigen Gebäuden:

Themenfeld	Kriterium		EPD-Kapitel
Ökologische Qualität	Umweltwirkungen	ENV 1.1	4.1, 4.2
	Risiken für lokale Umwelt	ENV 1.2	2.5
	Primärenergie	ENV 2.1	4.2
	Trinkwasser, Abwasser	ENV 2.2	2.3, 2.9
Ökonomische Qualität	Lebenszykluskosten	ECO 1.1	2.9
Technische Qualität	Reinigungsfreundlichkeit	TEC 1.5	2.9
	Rückbau-/Demontagefreundlichkeit	TEC 1.6	2.10, 4.3

Die nicht aufgeführten Themenfelder und Kriterien haben für das vorliegende Produkt keine direkte Relevanz. Bezüglich Anforderungen der Prozessqualität stellt Geberit umfassende Informationen in Planungshandbüchern und Kompetenzbroschüren sowie in technischen Datenblättern auf den Homepages der jeweiligen Vertriebsgesellschaften zur Verfügung.

6 ■ **GEB_EPD_**D57210 © 04-2013

Minergie ECO

Das Qualitätslabel Minergie-ECO legt im Vorgabenkatalog Neubauten 2011 Kriterien für neue und modernisierte Gebäude fest.

Bezüglich des Kriteriums Inhaltsstoffe enthält das Produkt keine Stoffe, die zum Ausschluss bei einer Minergie-ECO-Zertifizierung führen. Die weiteren Anforderungen aus den Bereichen Materialien und Bauprozesse, Gebäudekonzept, Schallschutz und Innenraumklima sind entweder nicht relevant oder werden vom vorliegenden Produkt umfänglich eingehalten. Die Anforderungen für Auslaufarmaturen der Checkliste "Effizienter Einsatz von Trinkwasser" sind erfüllt (GN09, GN10).

LEED

Relevante Themenfelder und Kriterien des US Green Building Council für Planung, Bau, Betrieb und Unterhalt von nachhaltigen Gebäuden gemäss Rating für Neubauten und grosse Renovierungen, 2009:

Themenfeld	Kriterium		EPD-Kapitel
Wassereffizienz (WE)	Reduktion Wassernutzung	Prerequisite 1 Credit 3	2.3
Energie und Atmospäre (EA)	Optimierte Energieperformance	Credit 1	2.3
Materialien und Rohstoffe (MR)	Baustellenabfallmanagement	Credit 2	2.8
	Recyclinganteil	Credit 4	2.5
Innovation/Design (D)	Innovation/Design	Credit 1	2.4

(WE) Elektronische Waschtischarmaturen von Geberit erfüllen die Voraussetzung der Wassereffizienz von 0,8 Litern pro Zyklus für den öffentlichen Bereich und von 6,8 Litern pro Minute für private Bauten. Durch Anpassung der Zykluszeit respektive Einsatz passender Strahlregler kann im Credit 3 volle Punktzahl erreicht werden (siehe Kapitel 2.3).

(EA) Betrieb durch eine autarke Generatoreinheit möglich.

Die nicht aufgeführten Themenfelder und Kriterien haben für das vorliegende Produkt keine direkte Relevanz.

3 Ökobilanz - Berechnungsgrundlagen

3.1 Deklarierte Einheit

Die deklarierte Einheit ist eine elektronische Waschtischarmatur als kompletter Verkaufsartikel inklusive Speisung und Verpackung.

Bei den Hauptwirkungskategorien weist der meistverkaufte Typ 185, Netz, zum Kalt- und Warmwasseranschluss ohne Mischerhebel (Artikelnummer: 116.145.21.1), generell die höchsten Werte auf und kann somit als repräsentativ für alle in Kapitel 2.1 aufgelisteten Modelle gesehen werden. Die beiden Typen 185 und 186 unterscheiden sich nur leicht in der Bauform. Dies hat keinen massgeblichen Einfluss auf die bilanzierten Input- oder Outputströme. Auch die Unterschiede zwischen den Betriebsvarianten führen nur zu geringen Schwankungen bei den Ökobilanzergebnissen.

3.2 Systemgrenzen

Diese Umweltproduktdeklaration ist eine cradle to gate with options-Deklaration ("Wiege bis Werkstor mit Optionen") inklusive Bauprozess und End-of-Life. Die Nutzungsphase und die Abbruchphase sind nicht eingeschlossen, da Erstere benutzerabhängig und Letztere nicht relevant ist. Die Studie deckt die europäische Marktsituation im Jahr 2010 ab.

	Produkt			ozess	Nutzung	End-of-Life			
Rohmaterial	Transport zum Her- steller	Herstellung	Distri bution	Installation im Gebäude		Abbruch	Transport zur Abfall- behand- lung	Wiederver- wertung, Rückgewin- nung, Recycling	Entsorgung
A1	A2	А3	A4	A5	B1-B7	C1	C2	C3	C4
X	х	х	Х	x	_	_	Х	х	х

⁻ nicht betrachtet / nicht relevant

3.3 Technische Szenarioinformationen und Annahmen

(A1) Für die Rohmaterialbereitstellung wurde der gesamte Roh- und Recyclingmaterialinput mit entsprechenden europäischen Daten abgebildet, einschliesslich der material- und produktionsbedingten Verluste von 1 bis 6 %. Sekundärrohstoffe beinhalten diejenigen Umwelteinflüsse, die durch die Sammlung von Abfällen und das Recycling entstehen. Es wurde ein Recyclinganteil von 80 % bei Aluminium, 55 % bei Kupfer und Stahl, 33 % bei Messing und 100 % bei Karton bilanziert.

(A2) Für Transporte von den Lieferanten aus Europa und Asien zu Geberit wurden Standardtransportdistanzen je Land angenommen sowie in den Hintergrunddaten hinterlegte Durchschnittswerte für Flottenmix und Auslastung. Für Transporte zwischen den Geberit Werken wurde hingegen die effektive Auslastung verwendet. Als Transportmittel kommen innerhalb Europas dieselbetriebene LKWs zum Einsatz, interkontinentale Transporte erfolgen per Frachtschiff mit anschliessender Feinverteilung per LKW. Elektronische Komponenten werden per Flugzeug transportiert.

(A3) In der Herstellung bei Geberit spielt der Stromverbrauch durch Spritzgiessen und Montage die wichtigste Rolle; er wurde über den chinesischen Strommix abgebildet. Der Verbrauch von zusätzlichen Substanzen oder Wasser ist vernachlässigbar. Für die Zukaufteile wurden verlässliche Hintergrunddaten verwendet. Zudem wurden für den Armaturkörper aus Messing die Prozesse Giessen und Verchromen mit einer 10,3 µm Schicht abgebildet.

(A4) Die Distribution zu den Kunden basiert auf der aktuellen Geberit Marktsituation, erfolgt je etwa hälftig nach Europa und Übersee und berücksichtigt neben dem aktuellen Flottenmix mit vornehmlich Euro-5-Fahrzeugen auch eine Fahrzeugbeladung mit durchschnittlich 5 t und effektive Distanzen. Sie wird innerhalb Europas mittels dieselbetriebener LKWs realisiert (durchschnittlich über 590 km) respektive per Frachtschiff (rund 10 000 km) und LKW (rund 800 km) nach Übersee.

(A5) Während der Installation fallen neben dem Verpackungsabfall aus Papier, Karton und PE-Folie keine zusätzlichen Stoffströme an. Karton und Papier gelangen ins Recycling, PE-Folie in die Verbrennung.

8 **■GEBERIT** GEB_EPD_D57210 © 04-2013

(C1–C4) Abfälle, die wiederverwertet werden, verlassen das Produktsystem ohne Umweltbelastungen aus dem ersten Lebenszyklus. Für potenziell vermiedene Produktion werden keine Gutschriften erteilt. Bei der Entsorgung wird angenommen, dass alle Abfälle nach Abbruch auf der Baustelle gesammelt und fachgerecht getrennt werden. 100 % aller Metallteile werden demnach rezykliert. Von den Elektronikkomponenten, Kabeln und Batterien werden, entsprechend dem europäischen Durchschnitt, nur 40 % rezykliert und 60 % verbrannt. Zudem wird angenommen, dass alle Kunststoffteile verbrannt werden.

3.4 Datengrundlage

Diese Umweltproduktdeklaration basiert auf einer umfassenden Ökobilanz in Anlehnung an ISO 14044:2006. Zur Verifizierung dient ein ausführlicher Hintergrundbericht, der die Anforderungen der EN 15804 erfüllt.

Die Bestandsdaten basieren hauptsächlich auf den mittleren jährlichen Produktionsdaten, die von der Geberit AG für das Jahr 2010 zur Verfügung gestellt wurden. Für alle weiteren Daten wurden ecoinvent Daten (Version 2.2; www.ecoinvent.org) verwendet. Die Datenqualität kann somit als gut bezeichnet werden.

Die Modellierung und alle Berechnungen wurden mithilfe der Ökobilanz-Software SimaPro durchgeführt. 1

^{1.} PRe Consultants (2011) SimaPro 7.3, Amersfoort, NL

4 Ökobilanz – Ergebnisse

4.1 Umweltverträglichkeit

	Einheit	Produkt	Distribution	Installation	Transport	Wiederverwer- tung, Recycling	Entsorgung
		A1-A3	A4	A5	C2	C3	C4
Globale Erwärmung (GWP)	kg CO ₂ -eq	25,3	0,762	0,044	< 0,01	1,0	0
Ozonabbau (ODP)	kg CFC-11-eq	5,12E-07	2,58E-08	1,52E-11	9,30E-12	2,91E-09	0
Versauerung (AP)	kg SO ₂ -eq	3,92E-03	1,17E-05	5,67E-08	2,63E-09	5,45E-06	0
Eutrophierung (EP)	kg PO ₄ 3- eq	0,174	0,0	0,0	0,0	3,31E-04	0
Photochemische Ozon- bildung (POCP)	kg C ₂ H ₄	1,39E-02	2,08E-04	1,35E-07	2,98E-08	1,38E-05	0
Abiotischer Ressour- cenabbau, Stoffe (ADPE)	kg Sb-eq	3,01E-03	3,13E-06	6,10E-10	1,28E-09	3,60E-07	0
Abiotischer Ressour- cenabbau, fossil (ADPF)	MJ-eq	270,6	11,1	< 0,01	< 0,01	0,6	0

4.2 Ressourcennutzung

	Einheit	Produkt	Distribution	Installation	Transport	Wiederverwer- tung, Recycling	Entsorgung
		A1-A3	A4	A5	C2	C3	C4
Primärenergiebedarf, erneuerbar, gesamt	MJ	40,1	0,2	< 0,1	< 0,1	< 0,1	0
Primärenergiebedarf, erneuerbar, ohne Roh- materialnutzung	MJ	40,1	0,2	< 0,1	< 0,1	< 0,1	0
Primärenergiebedarf, erneuerbar, Rohmate- rialnutzung	MJ	0	0	0	0	0	0
Primärenergiebedarf, nicht erneuerbar, gesamt	MJ	308,2	11,8	< 0,1	< 0,1	0,9	0
Primärenergiebedarf, nicht erneuerbar, ohne Rohmaterialnutzung	MJ	302,7	11,8	< 0,1	< 0,1	< 0,1	0
Primärenergiebedarf, nicht erneuerbar, Roh- materialnutzung	MJ	5,5	0	0	0	0	0
Einsatz von Sekundärstoffen	kg	11,2	0	0	0	0	0
Einsatz von erneuerba- ren Sekundärbrenn- stoffen	MJ	0	0	0	0	0	0
Einsatz von nicht erneuerbaren Sekun- därbrennstoffen	MJ	0	0	0	0	0	0
Einsatz von Süsswas- serressourcen (netto)	m ³	0,05	< 0,01	< 0,01	< 0,01	< 0,01	0

10 ■GEBERIT GEB_EPD_D57210 @ 04-2013

4.3 Output-Stoffflüsse und Abfall

	Einheit	Produkt	Distribution	Installation	Transport	Wiederverwer- tung, Recycling	Entsorgung
		A1-A3	A4	A5	C2	C3	C4
Gefährlicher Abfall	kg	1,8E-03	1,1E-05	1,4E-08	4,0E-09	5,3E-06	0
Nicht gefährlicher Abfall	kg	4,45	< 0,1	< 0,1	< 0,1	< 0,1	0
Radioaktiver Abfall	kg	8,5E-04	1,8E-05	8,8E-09	4,9E-09	8,3E-06	0
Komponenten für Wiederverwendung	kg	0	0	0	0	0	0
Stoffe zum Recycling	kg	0,13	0	0,76	0	2,25	0
Stoffe für Energierück- gewinnung	kg	< 0,1	0	< 0,1	0	0,2	0
Exportierte Energie – Elektrizität	MJ	< 0,1	0	0	0	0,8	0
Exportierte Energie – Wärme	MJ	< 0,1	0	0	0	2,3	0

Geberit International AG Schachenstrasse 77 CH-8645 Jona

T +41 55 221 63 00 F +41 55 221 63 16 documentation@geberit.com

→ www.geberit.com